
www.zurich.ibm.com

The CPMD Code:
from Clustered Regatta Frames

to Blue Gene

The CPMD Code:
from Clustered Regatta Frames

to Blue Gene

A .Curioni
Computational Biochemistry and

Material Science Group
IBM Zurich Research Laboratory

A .Curioni
Computational Biochemistry and

Material Science Group
IBM Zurich Research Laboratory

Outline of the talk
• Introduction

– The CPMD Code: some history.
• Theory and Implementation

– Strategy and Single Processor Optimization
– Distributed Memory Parallelization (MPI)
– Mixed Distributed/Shared Memory Parallelization

(MPI/OpenMP)
– Taskgrops parallelization

• Benchmark Results on p690, JS20 and BG/L
– Results and Discussion

• Conclusion

CPMD history

– Born at IBM Zurich from the original Car-Parrinello Code in
1993;

– developed in many other sites during the years (more than
150,000 lines of code); it has many unique features, e.g. path-
integral MD, QM/MM interfaces, TD-DFT and LR calculations;

– since 2001 distributed free for academic institutions
(www.cpmd.org); more than 5000 licenses in more than 50
countries.

CPMD distribution:
An extended community.

CPMD distribution

1-10
10-20
20-50
50-100
100-500
>500

CPMD at IBM Zurich
Year System

(limit)
Type of

calculation HW Type of
algorithm

1992
one organic molecule

of
~50 atoms

dynamics;
electronic
structure

RISC6000/580
(125 MFlops) serial

1994
liquid

100 atoms.
organics

water

reaction
dynamics -
free energy

SP1-16 nodes
(2 GFlops) parallel/MPI

1996
biomolecules

200 atom models and
in water

reaction
dynamics;
electronic
structure

SP2/66MHz
16 nodes

(4.2 GFlops)
parallel/MPI

1998
complex interfaces

400 atoms.
water/oxide

organic/metal

all
of the above

SP2/166MHz
32 nodes

(20.5 GFlops)
parallel/MPI

2000

supramolecular
systems

1000 atoms.
2D quantum dots

arrays

all
 of the above

SP3/200MHz
64/2 ways nodes
(102.4 GFlops)

parallel/MPI+
OpenMP

2002
small proteins

realistic interfaces
3000 atoms

all
of the above

p690/1.3GHz
8/32 ways nodes

(1.3 TFlops)

parallel/MPI+
OpenMP+

Globus

www.zurich.ibm.com

Outline of the talk
• Introduction

– The CPMD Code: some history.
• Theory and Implementation

– Strategy and Single Processor Optimization
– Distributed Memory Parallelization (MPI)
– Mixed Distributed/Shared Memory

Parallelization (MPI/OpenMP)
– Taskgrops parallelization

• Benchmark Results on p690, JS20 and
BG/L
– Results and Discussion

• Conclusion

Total Energy of a molecular system Total Energy of a molecular system
(Khon-Sham formulation of DFT in the BO approximation)

Etot(R,r)=Eel(r;R)+Eion(R)
Eel(r;R)=Ek+Eext+Eh+Exc

Ek=-1/2 Σi <Ψι | ∆ |Ψι> (Kinetic Energy)

Eext=∫Vext(r)ne(r)dr (Nuclei/Electrons interaction Energy)

ne(r)=Σι fi |Ψι|2

Eh= 1/2∫∫ne(r1)ne(r2) dr1dr2 (Hartree Energy)

Exc= ∫εxc(r)ne(r) dr (Exchange-Correlation Energy (ManyBody Term))

Optimization of Molecular Structure Optimization of Molecular Structure

Optimization of Eel ------> Forces on Ions ------> Structure optimization or
Molecular Dynamics

Ψι (r)=ΣjcijΦj

Localized basis set (e.g. gaussian functions)

Extended basis set (Plane Waves)

Direct Minimization(Orthogonalization)

Eigensystem(Diagonalization) Car-Parrinello

Total Energy of a molecular system Total Energy of a molecular system
with a plane wave basis setwith a plane wave basis set

∑Ω
=

G

GrGr i
i ec)(1)(ψ

[]
2

2
*

*22

)(1)(2

)()()()(
2
1

I
j

I j
jnl

XCXCttH

loclocii ikin

FfE

nFdEnnE

VSnEcfE

ω

π

∑∑

∫∑

∑∑∑

=

=Ω=

Ω==

rG
G

G

GGGGG

G

GG

Scaling I Scaling I

The size of a system is determined by the number M of PWs needed
for its accurate description, the number N of electrons,
and the number I of ions.

Electronic minimization:

(CPU time)
-NMlogM (e.g. calculation of the density, calculation of the forces)
-N2M (e.g. orthogonalization)
(Memory)
-NM (electronic wavefunction in reciprocal space)

Scaling II Scaling II
Structure minimization:

(CPU time)
-I3 (NR)
(Memory)
-I3 (Hessian)

For molecular systems up to 1000 atoms
(max size for a 100 GFlop computer):
M>>>N>I

Calculation dominated by 3D-FFT, memory by PWs.

Implementation Strategy

• Reduce the number of operations
– use symmetry of the wavefunctions at Γ point: ci(G) = ci*(-G)

• reduce the number of operation by a factor 2
• two 3D-FFT can be made at the price of one

– take advantages of the sparsity of our FFT (two diverse cutoffs)
• reduce the number of operation by a factor 2 – std 3D-FFT routines not

usable

• Use optimized BLAS routines (ESSL, ATLAS) whenever
possible
– Prefer routines where block algorithms are more efficient

(e.g. DGEMM vs DGEMV)

Example of Single processor performance
on Power4 (1.3GHz)

• System : 216 atom SiC supercell, 128x128x128 Mesh,
Cutoff 60 Ry (477,534 plane waves)
– Time per MD step = 313 s
– Performance = 2 GFlops
– Relative Perfomance= 38 %

• System : 512 atom SiC supercell, 168x168x168 Mesh,
Cutoff 60 Ry (1,131,630 plane waves)
– Time per MD step = 2761 s
– Performance = 2.4 GFlops
– Relative Perfomance= 46 %

DGEMM max Relative Performance = 66 %

Distributed Memory Parallelization Distributed Memory Parallelization

•Distribute PWs and real space mesh following these conditions:

•A processor hosts full planes of real-space grid points.
•Each processor has the same number of plane waves.
•All plane waves with common y and z components are on the
same processor.
•The number of different (y, z) pairs of plane-wave components
is the same on each processor.
•The number of real-space planes is the same on each processor.

-

Distributed Memory Parallelization Distributed Memory Parallelization

Parallelize 3D-FFT : (Mx,My,Mz) points , F(x,y,z)
My,Mz 1D-FFT along x

data transposition F(x',y,z)
Mx,Mz 1D-FFT along y

data transposition F(x',y',z)
Mx,My 1D-FFT along z

Using the data distribution presented in the previous slide only a
single ALL TO ALL communication is needed after the first 1D-
FFT.
All the other data that have not direct dependence on plane
waves indexes are replicated (e.g. overlap matrices)

Distributed Memory ParallelizationDistributed Memory Parallelization
ProblemsProblems

• The number of grid points in x direction limits the maximum
number of processors that can be used efficiently in the 3D
FFT. (major cause of load unbalance).

• The the linear algebra involve in the calculation (e.g.
orthogonalisation) is not parallel and limits the maximal
speedup that can be achieved (and therefore the size of the
system that can be calculated).

Distributed Memory ParallelizationDistributed Memory Parallelization
ProblemsProblems

• Replicated overlap matrices might become a memory bottleneck
for large systems on many processors with small memory (e.g.
Blue Gene/L)

• The time required for the all-to-all communications scale as
Npe * latency, downgrading the performance in the case of
communication adapters with relatively high latency.
(the latency it is always determined by the slowest link in
clustered SMP servers)

Distributed Memory ParallelizationDistributed Memory Parallelization
SolutionsSolutions

• Mixed MPI/SMP parallelization
– reduce the number of MPI tasks and therefore the impact of

latency and load unbalance
– parallelize the linear algebra involved in the orthogonalization
– requires an SMP hardware

• Taskgroups parallelization
– reduce drastically load unbalance and hide latency in the

bandwidth
– needs roughly double amount of communication

Mixed MPI/OpenMP parallelization

• OpenMP strategy:

– Same data distribution
– Add OpenMP directives on all large loops (e.g. NNR1,

NGW)
– Link multithreaded linear algebra libraries (e.g. esslsmp)
– Add OpenMp directives to the zeroing routines and to the

Gather and Scatter routines
– Use 4-8 SMP task per MPI task (SMP parallelization

within a MCM)

Taskgroups parallelization

• Taskgroups strategy:
– Same data distribution
– Given a number of taskgroups, arrange the processors

in a 2 dimensional array; each processor is member of its
column group and row group

– initial data exchange in the column groups
– each row group perform independently the FFTs
– A final data exchange in the column groups restore the o

original data distribution

• If number of taskgroup = number of processors this approach
correspond to a parallelization over the electronic states

Distributed Memory ParallelizationDistributed Memory Parallelization
SolutionsSolutions

• Mixed MPI/SMP parallelization
– reduce the number of MPI tasks and therefore the impact of

latency and load unbalance
– parallelize the linear algebra involved in the orthogonalization
– requires SMP hardware

• Taskgroups parallelization
– reduce drastically load unbalance and hide latency in the

bandwidth
– needs roughly double amount of communication

Outline of the talk
• Introduction

– The CPMD Code: some history.
• Theory and Implementation

– Strategy and Single Processor Optimization
– Distributed Memory Parallelization (MPI)
– Mixed Distributed/Shared Memory Parallelization

(MPI/OpenMP)
– Taskgrops parallelization

• Benchmark Results on p690, JS20 and BG/L
– Results and Discussion

• Conclusion

Test Cases

• Test 1 : 216 atoms SiC supercell, 128x128x128 Mesh,
Cutoff 60 Ry (477,534 plane waves)

• Test 2 : 512 atoms SiC supercell, 168x168x168 Mesh,
Cutoff 60 Ry (1,131,630 plane waves)

• Test 3 : 1000 atoms SiC supercell, 256x256x256 Mesh,
Cutoff 60 Ry (2,209,586 plane waves)

Test 1: performance and Scaling on
Single Regatta Frame (p690 1.3GHz)

• System : 216 atoms SiC supercell, 128x128x128 Mesh,
Cutoff 60 Ry (477,534 plane waves)

57%
72%
82%
95%
98%

-

Parallel
Efficiency

22%35.91832
28%23.12816
32%13.1488
36%7.6834
37%3.91612
38%2.03131

Relative
Performance

Performance
(GFlops)

Time/Step
(s)

N Proc

Test 2: performance and Scaling on
Single Regatta Frame (p690 1.3GHz)

• System : 512 atoms SiC supercell, 168x168x168 Mesh,
Cutoff 60 Ry (1,131,630 plane waves)

72%
82%
88%
95%
97%

-

Parallel
Efficiency

34%51.612632
38%30.821216
41%16.53958
44%8.97284
45%4.614222
46%2.427611

Relative
Performance

Performance
(GFlops)

Time/Step
(s)

N Proc

Example: MPI vs MPI/SMP
Single Regatta Frame

508/4512 atoms
5232/1512 atoms
368/4216 atoms
3632/1216 atoms

Performance
(GFlops)

MPI/SMP
tasks

System

Test 1 on switched Regatta frames
(p690 1.3GHz) (Colony switch)

• Test 1 : 216 atoms SiC supercell, 128x128x128 Mesh,
Cutoff 60 Ry (477,534 plane waves)

86
160

Performance
(GFlops)

4%8.0256/41024
8%4.24128/81024

Parallel
Efficiency

Time per step
(s)

MPI/SMP
tasks

N Proc

• Limit Case : 50% of the time spent in all to all with 128 MPI tasks;
• Latency Bound
• Federation Switch speed up the calculation by a factor ~1.5
• Best mixing with colony 1 MPI / 8 SMP ;

with federation 1 MPI / 4 SMP

Test 2 on switched Regatta frames
(p690 1.3GHz) (Colony switch)

• Test 2 : 512 atoms SiC supercell, 168x168x168 Mesh,
Cutoff 60 Ry (1,131,630 plane waves)

23%70310.6160/81280
21%33922.1320/41280

380

Performance
(GFlops)

24%20.164/8672

Parallel
Efficiency

Time per step
(s)

MPI/SMP
tasks

N Proc

•Limit Case : 50% of the time spent in all to all with 128 MPI tasks;
•Latency Bound
•Federation Switch speed up the calculation by a factor ~1.5
•Best mixing with colony 1 MPI / 8 SMP ;
with federation 1 MPI / 4 SMP

•Limit Case : 50% of the time spent in all to all with 128 MPI tasks;
•Latency Bound
•Federation Switch speed up the calculation by a factor ~1.5
•Best mixing with colony 1 MPI / 8 SMP ;
with federation 1 MPI / 4 SMP

Test 3 on switched Regatta frames

• Test 3 : 1000 atoms SiC supercell, 256x256x256 Mesh,
Cutoff 60 Ry (2,209,586 plane waves)

37%108752.1154/81232
31%78071.9256/41024
43%101756.3128/81024

563

Performance
(GFlops)

46%99.564/8512

Parallel
Efficiency

Time per step
(s)

MPI/SMP
tasks

N Proc

• Mixed approach instrumental to obtain these results
• Federation switch ~25 % improvement

Test 1: BlueGene/L
(prototype 500MHz)/Mesh

• Test 1 : 216 atoms SiC supercell, 128x128x128 Mesh,
Cutoff 60 Ry (477,534 plane waves)

68%2.18512
81%3.54256
90%6.54128

97%23.1232
100%45.5116

97%12.1264

60%1.2161024

100%90.18

Parallel
Efficiency

Time per step
(s)

TaskGroupsN Proc

Test 1: Performance and Scaling on
JS20 blades PPC970 1.6GHz

• System : 216 atoms SiC supercell, 128x128x128 Mesh,
Cutoff 60 Ry (477,534 plane waves)

14%76%27.615.632
51%

80%
98%
100%

Parallel
Efficiency

12%50.18.664

19%19.329.116
24%12.152.08
24%6.1102.54

Relative
Performance

Performance
(GFlops)

Time/Step
(s)

N Proc

• Performance using 2 MPI task per PPC970 node; degradation ~30%
– Degradation ~ 1 % on p690 , ~ 70% on Xeon 2.8 GHz

Test 1: Scaling - comparison
p690-JS20-BG/L

0
10
20
30
40
50
60
70
80
90

100

8 16 32 64 128 256 512 1024

BG/L
JS20
p690

Acknowledgements

• W. Andreoni
• J.J. Porta, G. Banhot and B. Walkup
• J. Hutter

• The HPCx consortium
• T. Kennedy
• A. Trew

• W. Andreoni
• J.J. Porta, G. Banhot and B. Walkup
• J. Hutter

• The HPCx consortium
• T. Kennedy
• A. Trew

