
X10—The Big Picture

© 2007 IBM Corporation1

IB
M

 R
es

ea
rc

h

X10: The Big Picture
http://x10.sf.net
x10-users@lists.sourceforge.net

Vijay Saraswat
vijay@saraswat.org
July 2007
IBM Research

This material is based upon work
supported by the Defense Advanced
Research Projects Agency under its
Agreement No. HR0011-07-9-0002.

X10—The Big Picture

© 2007 IBM Corporation2

IB
M

 R
es

ea
rc

h

Acknowledgments

Recent Publications

1. “Constrained Types for OO Languages”, Submitted.

2. “Deadlock-free scheduling of X10 Computations with bounded
resources”, SPAA 2007.

3. “A Theory of Memory Models”, PPoPP 2007.
4. “May-Happen-in-Parallel Analysis of X10 Programs”, PPoPP

2007.

5. “An annotation and compiler plug-in system for X10”, IBM
Technical Report, Feb 2007.

6. “Experiences with an SMP Implementation for X10 based on
the Java Concurrency Utilities” Workshop on Programming
Models for Ubiquitous Parallelism (PMUP), September 2006.

7. "An Experiment in Measuring the Productivity of Three
Parallel Programming Languages”, P-PHEC workshop,
February 2006.

8. "X10: An Object-Oriented Approach to Non-Uniform Cluster
Computing", OOPSLA conference, October 2005.

9. "Concurrent Clustered Programming", CONCUR conference,
August 2005.

10. "X10: an Experimental Language for High Productivity
Programming of Scalable Systems", P-PHEC workshop,
February 2005.

Tutorials

� TiC 2006, PACT 2006, OOPSLA 2006, PPoPP 2007

� Graduate course on X10 at U Pisa (07/07)

� X10 Core Team
– Rajkishore Barik, Ganesh

Bikshandi, Chris Donawa, Allan
Kielstra, Sreedhar Kodali, Nathaniel
Nystrom, Igor Peshansky, Christoph
von Praun, Vijay Saraswat, Vivek
Sarkar, Lex Spoon, Pradeep Varma,
Krishna Venkat, Tong Wen

� X10 Tools
– Philippe Charles, Julian Dolby,

Robert Fuhrer, Frank Tip, Mandana
Vaziri

� Emeritus
– Kemal Ebcioglu, Christian Grothoff,

Vincent Cave
� Research colleagues

– Ras Bodik, Guang Gao, Radha
Jagadeesan, Jens Palsberg, Rodric
Rabbah, Jan Vitek

– Vinod Tipparaju, Jarek Nieplocha
(PNNL)

– Kathy Yelick, Dan Bonachea
(Berkeley)

– Doug Lea (SUNY Oswego)
– Several others at IBM

X10—The Big Picture

© 2007 IBM Corporation3

IB
M

 R
es

ea
rc

h

A new era of mainstream parallel processing

The Challenge
Parallelism scaling replaces frequency scaling as foundation for
increased performance � Profound impact on future software

Multi-core chips Cluster ParallelismHeterogeneous Parallelism

16B/cycle (2x)16B/cycle

BIC

FlexIO TM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIO TM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

PXUL1

PPU

16B/cycle
PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

SMF

LS

SXU
SPU

LS

SXU
SPU

SMF
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .

. . .
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .

Memory

PEs,

SMP Node
PEs,

.

Memory

PEs,

SMP Node
PEs,

Interconnect

Our response:
Use X10 as a new language for parallel hardware that builds on
existing tools, compilers, runtimes, virtual machines and libraries

X10—The Big Picture

© 2007 IBM Corporation4

IB
M

 R
es

ea
rc

h

A strategy – radical incrementalism

� One (mainstream)
programming model to rule
them all.
– Multicore, Clusters, Combos
– Sequential Java +

concurrency
– places, async, finish, clock,

atomic, annotations

� Keep it simple, stupid
– Look to aggressively

parallelize sequential
programs

– Concurrency as a means to
an end

� Address all approaches
– VM extensions

– Libraries

– Annotations + extensive
static analysis

– New languages

– Domain-specific parallelism

X10—The Big Picture

© 2007 IBM Corporation5

IB
M

 R
es

ea
rc

h

Themes

� Target productivity, without
sacrificing performance.

� Build on what we understand
– core sequential OO base.

� Manage concurrency and
distribution explicitly.

� Target the “mainstream”
programmer; do not ignore
the expert.

� Rule out large classes of
errors by design – statically
as far as possible, else
dynamically.

� Keep the language small,
orthogonal.

� Make easy things easy, hard
things possible.

� Address the entire tool chain:
development environment,
analysis tools, debugging, …

X10—The Big Picture

© 2007 IBM Corporation6

IB
M

 R
es

ea
rc

h

Programming Model -- The Big Picture

� Places
– Partition data and activities

that operate on the data
– But keep address space

global.
– Locality central to

heterogeneity, clustering.

� Asynchrony
– Express fine-grained

parallelism
– Exploit fork-join structure,

recursive partitioning.

� Atomicity
– Specify granularity of

atomicity.
– Focus on the desired

property, not the mechanism.

� Ordering
– Termination detection
– Quiescence detection

X10—The Big Picture

© 2007 IBM Corporation7

IB
M

 R
es

ea
rc

h

X10 Programming Model – The Big Picture

• Dynamic parallelism with a Partitioned Global Address Space
• Places encapsulate binding of activities and globally addressable data

• Number of places currently fixed at launch time
• All concurrency is expressed as asynchronous activities – subsumes
threads, structured parallelism, messaging, DMA transfers, etc.
• Atomic blocks enforce mutual exclusion of co-located data

• No place-remote accesses permitted in atomic section
• Immutable data offers opportunity for single-assignment parallelism

Storage classes:
� Activity-local
� Place-local
� Partitioned

global
� Immutable

X10—The Big Picture

© 2007 IBM Corporation8

IB
M

 R
es

ea
rc

h

X10 v1.01 Cheat sheet
Stm:

async [(Place)] [clocked ClockList] Stm

atomic Stm

when (SimpleExpr) Stm

finish Stm

next; c.resume() c.drop()

for(i : Region) Stm

foreach (i : Region) Stm

ateach (I : Distribution) Stm

Expr:

ArrayExpr

ClassModifier : Kind

MethodModifier:

atomic nonblocking sequential

local safe

Type:

DataType

nullable< Type>

future <Type >
Kind :

value | reference

ClassType , InterfaceType :

TypeName

[DepParameters] [PlaceTypeSpecifier]

x10.lang has the following classes (among
others)

point, range, region, distribution, clock, array

Some of these are supported by special syntax.

Annotations: @ InterfaceType

Annotations suffix types and prefix almost all
other syntactic elements.

X10—The Big Picture

© 2007 IBM Corporation9

IB
M

 R
es

ea
rc

h

X10 v1.01 Cheat sheet: Array support
ArrayExpr:

new ArrayType (Formal) { Stm }

Distribution Expr -- Lifting

ArrayExpr [Region] -- Section

ArrayExpr | Distribution -- Restriction

ArrayExpr || ArrayExpr -- Union

ArrayExpr .overlay (ArrayExpr) -- Update

ArrayExpr . scan([fun [, ArgList])

ArrayExpr . reduce([fun [, ArgList])

ArrayExpr .lift([fun [, ArgList])

ArrayType:

Type [Kind] []

Type [Kind] [region(N)]

Type [Kind] [Region]

Type [Kind] [Distribution]

Region:

Expr : Expr -- 1-D region

[Range, …, Range] -- Multidimensional Region

Region && Region -- Intersection

Region || Region -- Union

Region – Region -- Set difference

BuiltinRegion

Dist:

Region -> Place -- Constant distribution

Distribution | Place -- Restriction

Distribution | Region -- Restriction

Distribution || Distribution -- Union

Distribution – Distribution -- Set difference

Distribution. overlay (Distribution)

BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety.

X10—The Big Picture

© 2007 IBM Corporation10

IB
M

 R
es

ea
rc

h

X10 availability

� X10 is an open source
project (Eclipse Public
License).

� Website: http://x10.sf.net

� Reference implementation in
Java, runs on any Java 5 VM.
– Windows/Intel, Linux/Intel
– AIX/PPC, Linux/PPC
– Runs on multiprocessors

� Website contains
– Tutorial material
– Presentations
– Download instructions
– Copies of some papers
– Pointers to mailing list

X10—The Big Picture

© 2007 IBM Corporation11

IB
M

 R
es

ea
rc

h

Multi-core SMP Implementation

Analysis passes
X10

source

AST

X10 Parser

Code
Generation
Templates

Java code emitter

Annotated
AST

X10
Grammar

Target
Java

DOMO
Static

Analyzer

Java compiler

X10
Front
End

Outbound
activities

Inbound
activities

Outbound
replies Inbound

replies

Place

Ready
Activities

Completed
Activities

Blocked
Activities

Clock

Future

Executing
Activities

. . .

Atomic sections do
not have blocking

semantics

Activity can only access
its stack, place-local

mutable data, or global
immutable data

X10 classfiles
(Java classfiles with

special annotations for
X10 analysis info)

Java Concurrency Utilities (JCU)

Ready
Activities

Completed
Activities

Blocked
Activities

Clock

Future

Executing
Activities

. . .

Ready
Activities

Completed
Activities

Blocked
Activities

Clock

Future

Executing
Activities

. . .

Place 0 Place 1

. . .

E
xt

er
n

in
te

rf
ac

e

Fortran,
C/C++
DLL’s

X10
Runtime

JCU thread pool

High Performance JRE
(IBM J9 VM

+ Testarossa JIT
Compiler

modified for X10
on PPC/AIX)

Portable Standard
Java 5 Runtime

Environment
(Runs on
multiple

Platforms)

Java
Runtime

Common components w/ SAFARI

STM library

X10 libraries

Data Marking: DATA

X10—The Big Picture

© 2007 IBM Corporation12

IB
M

 R
es

ea
rc

h

PERCS Programming Model, Tools

X10 source code
Fortran source code

(w/ MPI, OpenMP)
C/C++ source code

(w/ MPI, OpenMP, UPC)
JavaTM source code

(w/ threads & conc utils) . . .

C/C++
components

Fortran
components

C/C++ runtime Fortran runtime

. . .

X10
Components

X10 runtime

Integrated Parallel Runtime: MPI + LAPI + RDMA + Op enMP + threads

Java
components

Java runtime

Fast extern
interface

Dynamic Compilation + Continuous Program Optimization

Text in blue
identifies

exploratory
PERCS

contributions

Productivity
Measurements

X10
Development

Toolkit

Java
Development

Toolkit

C/C++
Development

Toolkit
+ MPI extensions

Fortran
Development

Toolkit
. . .

Performance
Exploration

X10
Compiler

Java
Compiler

C/C++ Compiler
w/ UPC

extensions

Fortran
Compiler

. . .

Parallel Tools
Platform (PTP)

Eclipse
platform

Refactoring for
Concurrency

X10—The Big Picture

© 2007 IBM Corporation13

IB
M

 R
es

ea
rc

h

X10DT: Enhancing productivity

� Code editing

� Refactoring

� Code visualization

� Data visualization

� Debugging

� Static performance analysis

Vision: State-of-the-art IDE for a modern OO langua ge for HPC

X10 Incremental Builder;
Problems View populated
w/ X10 compiler messages

���������	
��������
��
�	���	��
	������
��	����
	���
�������
��
��	

��������	��
����������
�
�������������������������

�����������
����	����
	��

X10—The Big Picture

© 2007 IBM Corporation14

IB
M

 R
es

ea
rc

h

Operational X10 implementation (since 02/2005)

Analysis passes

X10
source

AST

Parser

Code
Templates

Code emitter

Annotated
AST

X10
Grammar

Target
Java

JVM

X10
Multithreaded

RTS

Native
code

Program
output

Structure

• Translator based on
Polyglot (Java compiler
framework)

• X10 extensions are
modular.

• Uses Jikes parser
generator.

Code metrics

•Parser: ~45/14K*

•Translator: ~112/9K

•RTS: ~190/10K – revised for JUC

•Polyglot base: ~517/80K

•Approx 280 test cases.

(* classes+interfaces/LOC)

New features 6/07

• Annotations

• X10lib v 1

09/03

02/04

07/04

02/05

07/05

12/05

PERCS
Kickoff

X10
Kickoff

X10 0.32
Spec Draft

X10
Prototype
#1

X10
Productivity
Study

X10
Prototype #2

Open Source
Release

X10 Compiler (06/2007)

12/06

6/07

Annotations, X10lib v1

X10—The Big Picture

© 2007 IBM Corporation15

IB
M

 R
es

ea
rc

h

X10Flash

� Distributed runtime
– In C/C++
– On top of messaging library

(GASNet, ARMCI, LAPI)
– Targeted for high-

performance clusters of
SMPs.

� X10lib
– Runtime also made available

as a standalone library.
– Supporting global address

space, places, asyncs,
clocks, futures etc.

� Performance goal
– To be competitive with MPI

� Release schedule
– Internal demonstration 12/07
– External release 2008

X10—The Big Picture

© 2007 IBM Corporation16

IB
M

 R
es

ea
rc

h

Conclusion

� X10 is intended to span
multicore, heterogenous
systems and clusters.

� X10 offers a simple
programming model for
concurrency and distribution
– Places
– Asynchrony
– Atomicity
– Ordering

� X10 is being developed as an
open source project
– Reference implementation

available on http://x10.sf.net

� A clustered implementation
is being worked on
– Compiles to C/C++
– Uses LAPI for inter-process

messaging
– Uses algorithmic scheduling

for intra-process scheduling

IBM Research: Software Technology

© 2005 IBM Corporation17

P
ro

gr
am

m
in

g
T

ec
hn

ol
og

ie
s

Backup

X10—The Big Picture

© 2007 IBM Corporation18

IB
M

 R
es

ea
rc

h

Comparison with MPI

Model of parallelism
� MPI: data parallel, SPMD
� X10: structured multithreading, SPMD is a special case.

Synchronization model
� MPI: clear distinction between control synchronization

(barriers) and communication (or combine them in a collective).
– synchronous: send / receive
– asynchronous: put/get

� X10: shared memory paradigm
– address space partitioned,

• locality of access visible to the programmer
– remote access are asynchronous (but may be made synchronous)
– Supports “active messages”.

X10—The Big Picture

© 2007 IBM Corporation19

IB
M

 R
es

ea
rc

h

Comparison with UPC

X10 is similar to UPC in ...
� shared partitioned global

address space
� barrier synchronization:

– UPC split barrier (upc_notify,
upc_wait)

– X10 clocks: resume(), next
� parallel loops with affinity

– UPC affinity clause in
upc_forall

– X10 distribution in ateach

X10 extends UPC in ...
� dynamic structured

multithreading (not SPMD)
� safety properties (managed

runtime)
� distributed computation and

data, concept of places
� array language,

multidimensional arrays
� critical section synchronization

– simple atomic blocks, not
locks

– conditional atomic blocks
� type system exposes access

locality
� multiple, custom distributions

X10—The Big Picture

© 2007 IBM Corporation20

IB
M

 R
es

ea
rc

h

Comparison with CILK

X10 is similar to CILK in ...
� structured concurrency

– Cilk: spawn, sync
– X10: async, finish (block scoped,

rooted exception model), method
body not forced to finish
spawned asyncs.

– serial elision only for non-
blocking activities in X10

X10 extends CILK in ...
� distributed computation and

data, concept of places
– intra/inter-place work-stealing

scheduler?
� array language,

multidimensional arrays
� critical sections

– simple atomic blocks, not
locks

– X10 has condition
synchronization

� X10 managed runtime and type
system: safety properties

X10—The Big Picture

© 2007 IBM Corporation21

IB
M

 R
es

ea
rc

h

Comparison with Java ™

X10 language builds on the Java
language

Shared underlying philosophy:
shared syntactic and semantic
tradition, simple, small, easy to
use, efficiently implementable,
machine independent

X10 does not have:
� Dynamic class loading
� Java’s concurrency features

– thread library, volatile,
synchronized, wait, notify

X10 restricts:
� Class variables and static

initialization

X10 adds to Java:
� value types, nullable
� Array language

– Multi-dimensional arrays,
aggregate operations

� New concurrency features
– activities (async, future), atomic

blocks, clocks
� Distribution

– places
– distributed arrays

X10—The Big Picture

© 2007 IBM Corporation22

IB
M

 R
es

ea
rc

h

Overview of green field work

� Compilation for Combos
– Cell + Opteron
– Graphics cards – NVidia

(CUDA)

� Implement specific
annotations and supporting
static analyses
– Integrate with WALA

(http://wala.sf.net)

� Support Implicit Parallelism
– tryasync, dependency

annotations, flow
annotations, …

– Static/dynamic support

� Runtime
– x10lib – an implementation of

the X10 runtime in C/C++ for
high-performance clusters

– Algorithmic scheduling
• Design extensions to handle

X10 control constructs.
• Evaluate different

scheduling strategies (work-
stealing, parallel depth-first
scheduling, …)

• Implement

X10—The Big Picture

© 2007 IBM Corporation23

IB
M

 R
es

ea
rc

h

Algorithmic Scheduling

� Centralized task-queue is a
bottleneck
– Each worker must

synchronize in order to get
new work

� Thread pool may grow
unboundedly
– when causes thread to

suspend.
� Observation: finish/async

programs have series/parallel
dependence graphs.

� Solution: use Cilk-style work-
stealing scheduler
– Guaranteed O(T1/p + T�)

runtime, and p*S1 space.
� Todo:

– Investigate alternate
schedulers with better space
utilization/cache behavior (cf
parallel depth-first scheduler)

– Consider hiearchical, multi-
place scheduler

– Handle all X10 control
constructs.

Preliminary results: very encouraging. Good scaling ,
absolute performance.

X10—The Big Picture

© 2007 IBM Corporation24

IB
M

 R
es

ea
rc

h

Speedup for spannning tree on a 32-core Niagara

Runtime ~ 0.5s for p=24, V=5M, E=20M

Speedup on a 32-core machine for SpanF

0

5

10

15

20

Num Cores

S
pe

ed
up

V=1M

V=2M

V=3M

V=4M

V=5M

Ideal speedup

V=1M 1 1.86 3.75 7.27 12.90

V=2M 1 1.93 3.76 7.49 12.63

V=3M 1 1.92 3.65 7.32 12.58

V=4M 1 1.91 3.74 7.37 12.71

V=5M 1 1.95 3.82 7.43 13.15

Ideal 1 2.00 4.00 8.00 16.00

1 2 4 8 16

X10—The Big Picture

© 2007 IBM Corporation25

IB
M

 R
es

ea
rc

h

Speedup for spanning tree on 8-proc Opteron/Solaris

Runtime ~ 1.19s for p=8, V=5M, E=20M

Speedup on 8-way Opteron/Solaris

0

2

4

6

8

10

Num processors

S
pe

ed
up

N=5M

N=4M

N=3M

N=2M

N=1M

Optimal speedup

N=5M 1 2.08 3.93 6.97

N=4M 1 1.95 4.11 7.04

N=3M 1 1.94 3.77 6.48

N=2M 1 1.99 3.83 7.00

N=1M 1 2.02 3.88 6.73

Optimal 1 2.00 4 8

1 2 4 8

